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FORCED OSCILLATIONS OF A NON-LINEAR SYSTEM WITH A 

REPULSIVE POSITIONAL FORCE' 

A.A. ZEVIN and L.A. FILONENKO 

Non-linear systems with one degree of freedom, in which the positional 

force is directed away from the equilibrium position of the system, are 
considered. The existence of forced periodic oscillations, their 

Lyapunov stability, and the behaviour of amplitude-frequency 

characteristics are investigated. It is shown that stable periodic 
oscillations are possible in the case when the positional force has 
non-monotonic properties. Forced oscillations of a pendulum with respect 
to the upper equilibrium position are considered as an example. 

Systems with repulsive positional forces appear not to have been previously considered 
in the literature. The well-known analytical methods of non-linear mechanics 1/l, 21 etc.) 
are based on the assumption of the nearness of the solutions under investigation to solution 
of the corresponding autonomous system, and are inapplicable to our systems because there 

are no periodic generating solutions. In this paper a qualitative investigation is made of 
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the above-mentioned systems and the properties of the solutions under consideration are 
established directly from the form of the forcing term and the properties of the positional 

force. 

1. Consider the system 

i' + f (s) + Ep (ot) = 0 (1.1) 

p(ot)= -p(--ot)=p(wtf_2n) 

f (z) = -f (--z), f (.z)5 < 0 for x Z 0. 

Because of the last condition the positional force is always directed so as to deflect 
the system, i.e. it is repulsive 13/. In the associated autonomous SySten (8 = 0) periodic 

oscillations are impossible; z=o is an unstable position of equilibrium. We shall con- 
sider odd periodic oscillations about this position with period 2T = 2nlo, equal to the 
period of the forcing term (.r(t,s)= -x(-t,s)= zft +~T,E), x(&s)-+ 0 as E--+0). 

Because 

5 (0, E) = s(T, E) = 0, (1.2) 

it is clear that any solution of the boundary-value problem (l.l), l1.2), continued in t 
using Eq.(l.l), is odd and 2T-periodic, i.e. it belongs to the class under consideration. 

It is known that the solution of problem (l.l), (1.2) can be uniquely continued in E if 
the corresponding boundary-value problem for the variational equation 

Y" + a 0, E)Y = 0, Y (0) = Y (T) = 0, e 0, e) = I, (3 (t, E)) (1.3) 

only has a trivial solution. 
Because of conditions (1.1)‘ j,(z)<0 for small ;c, and so a(b,e)<O for small E. In 

this case no solution g(t) of Eq.fl.3) has more than one zero in the interval (0, M) 141, 
and so the above-specified continuability condition for X(&E) is satisfied. Thus for 
small E Eq.(l,l) has a unique periodic solution (because of the uniqueness of the extension 
of .z(t,e)) of the class under consideration. If the positional force has the monotonicity 
property (f,(z)<0 for all st, then the solution 2 (1, F) exists and is unique for all t'. 

If the function f(z) is non-monotonic, the function aft, F) becomes sign-varying for 
some value of k. Here the continuability conditions for Ic (f. E) may be violated for some 
& 2 P*, and in problem (1.3) a solution y(t,e,) appears that is positive in the interval 
(0, T). A further extension of x(t..s) .in e is, in general, impossible. 

We shall show that if 

p (ot) >a 0 in (0, T) (1.4) 

then n(t,~) increases with respect to E in the interval (0, 7'). 
The function x,(t,e) = dz(t,e)/& satisfies an equation obtained by differentiating 

(1.1) with respect to the parameter F: 

By virtue of (1.2) 

The solution of 
of the corresponding 

y” i- a (t. e)y i p (wt) = 0 (1.5) 

X, (0, E) = 3.8 (7,. e) = 0 (l.(i) 

the boundary-value problem (1.51, (1.6) can be expressed with the help 
Green's function I’(& s, F): 

T 
n 

y (f. e) = - j I- (L, s. E) p (ws) ds 
0 

r (t. S, E) = - 
Y (T 3 87 e) Y V? 0, E) _/_ * 

y (1‘, 0, E) 
6 = 

0, t<s 
v(t,s,e), t>s 

(1.7) 

where y (t, 8, e) is the solution of Eq.(1.3) satisfying the conditions y (t. I. F) = 0 and 
y' (t, t, E) = 1. 

Because the function y(t,O,&) has no zeros in 
CO 

(0, Tl when e( e, , we have I'(t,s.e) 
for t. s F (0, T). Consequently ze (t, E) > 0, i.e. 

j;te(y;), (0, 0. 
5 (1, a) increases with .s in the 

From this it follows in particular that under conditions (1.4) r (6, e) > 0 

&ppose msxts(t,e) = z(t,,e) = A (E). Because at this point z"(&, a)< 0, then by virtue 
of (1.1) f(A(e))+eP(Q>O. One can show that if min/(z)< -&maxp(ot)== --EJ+,, then 
A (e) =ZZ A, (e), where A0 (8) is the first root of the equation f(x)= -cpO. Physically this 
means that the amplitude A (E) of the oscillations under consideration does not exceed the 
deviation A,(E) of the system from the equilibrium position under the action of a constant 
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2. The stability of the solution under consideration is determined by the associated 
variational equation 

!I" -1 0 (f, F) y = 0, (1 (t, ') -a (i + 'T. E) (".I) 

As was shown above, a (1, E) < 0, for small t', and consequently Eq.(2.1) and the cor- 
responding solution X(&F) are unstable /4/. Of course, if i(s) decreases monotonically 
for all IC, the solution J (t, t.) is unstable for all e. Thus, in a system with a monotonic- 
ally repulsive positional force, periodic oscillations cannot be physically realized. 

If the function f(x) is non-monotonic, then for sufficiently large P the function 

a (t, 8) is positive in certain intervals. As is shown below, this can lead to stability 
for Eq.(2.1) and, consequently, to stability for 2 (t,?) to a first approximation. The 
presence, in a realistic system, of small dissipative forces, not included in Eq.(l.l), leads 
to the asymptotic stability of such a solution /5/. 

In applications one meets systems in which the positional force is repulsive for small 

z and restoring for large r (Fig.1; such properties are possessed by systems which have 
cracking, for example, the Mises girder). Here for E=O we have two stable equilibrium 
positions (.z = c and z== -c) alongside the unstable equilibrium (z = 0). 

We assume that the function f(z) is convex for x>o and that p (wl) satisfies con- 
dition (1.4). We will investigate changes in the stability of x (6 6) as the parameter E 
increases. 

Because 1 (1,~) increases with e in the interval (0, T), the coefficient a(t,c) also 
increases by virtue of the convexity of / (.I.) . At the limiting value P -= P*, the boundary- 
value problem(l.3) has a positive solution y (t, p*) on (1'. T) as was noted above. Thus, 
when E = E* Eq.(2.1) has a 2T-periodic solution Y(L,F*) with two zeros (1 = 0 and t : 7’) 
per cycle. From the theory of the Hill equation we know /4/ that the solution at the bound- 
aries of the second domain of instability has precisely this form. Consequently, as F 

increases from zero to E.+ , system (2.1) passes in turn through the zeroth domain of insta- 

bility (0< E< EJ, the zeroth domain of stability ('1< e< Q). the first domain of instability 

(y* < e < t'J? the first domain of stability (F~<~<F,), and, possibly, a second domain of 

instability (if P,<F*. i.e. if F, corresponds to the second boundary of the indicated 

domain). 

Fig.1 Fig.2 

We shall show that the lower boundary of the zeroth domain of stability corresponds to 

a solution ~(t, E) with amplitude A <c. 
If the limiting amplitude Al, = max,z(1,~*)< L then the assertion is obvious. Suppose 

that A,> c, then + (ti. F') -=z A (c') 7 c for some t, E (0, T) and F' < F*. Suppose that 

.TO (1. so') (where (I~ (0, I~') = 0 and .r,,'(O. x0') = x0') is a solution of the equation 

2" -+ f (r) = 0 I’.“) 

Because z =x'= 0 is a singular point of Eq.(2.1), .ro(t,.z,‘)~C) as s,'+O; it is 

obvious that X0 (tl, x0')* 00 as x0' - ). Hence one can find an x,,' such that .X0 (t,, X0.) ~~ c. 

The corresponding phase trajectory I/~ (+j intersects the phase trajectory c(r) of the sol- 

ution r(t, &')at some z = z,,(otherwi the equality J,, (tl. x0’) = .c (tl, F’) = c would not hold) . 
The functions PO (XI and u( satisfy the equations 

dii d.r = -v+/ (1). du’d.r = --u’ (f(z) + z-‘(z)), I’ (s) = p (c,,t (L)) (23) 

where t (~1 is the inverse function to z (t) (1 E (0, tl)). 
Since P(z)> 0 by virtue of (1.41, according to Chaplygin's theorem on differential 

inequalities u (J) > u0 (z) on (0, q) and v(z)< U,(X) in the interval (IB, C) (Fig.2). 

Consequently, .2: (t, E') > x0 (t, x0') in the interval (0, t,t and a (t, e) ;> n, (t) = /, (z,, (t. x0')) because 

of the convexity of f(x). B ecause of the autonomy of (2.2) zO' (L X0') satisfies the cor- 

responding variational equation, i.e. for a = n,(t) Eq.(2.1) has a solution y (t)=,r,,' (t. .I"') 
with y’ (0) = x0” (0. q,‘) = -f (0) = y’ (Q = -f (c)= 0 and y (t) > 0 in the interval (0, t,). 
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It can shown in exactly the same way that one can find a solution sr(t) of Eq(2.2) 
such that zl(tl) = c and rl (7') = 0; the associated coefficient U,(t)= f,(rr(t))<a (t,&) in the 
interval (tl, T); Eq. (2.1) for a = a, (t) has the solution y (t) = --x1' (t), and so I' == y' (T) = 
0 and g(t)>0 in the interval (tl. r). 

We nut a = h(t) in (2.1), where A (t) = a, (t) in IO, t,l. A (t) = a, (t) in (tl, T1. h (t) = il 
(2T - t),h it) = A (t ‘il 2T). Suppose y(t)“is a-solution fo (2.1) for it- = S (t) with Y' 01) = 
0 and u ft,)>O. It follows from the results obtained that ~'(0).=y'(T)=0, Y(t)>0 in 

r \ I, , 

the interual [O, Tl, and y (t) = Y (2T - t) = y (t)+ 2T), i.e. Eq.(2..1) with a = A (t) has a 
non-oscillatory ZT-periodic solution Y (t). 

Because a(t.e')> A(t), Eq.(2.1) is oscillatory for E = E’ /4/, (i.e. the number of 
zeros of any solution g(t) in the interval (0,l) increases without limit as 6-+ s); con- 
sequently, the lower boundary of the zeroth domain of stability satisfies El < s'. Hence, 
for E fZ (sl. E*), where 8" = min(eI,s'), the solutions ;e(t E) are stable, and the correspond- 
ing amplitudes A (E)<c. It follows from the latter inequality that stable periodic oscil- 
lations are also possible in a system with apositionalforce that is repulsive for all 2, 
so long as the function f(x) is non-monotonic. 

We assume that the forcing term satisfies the condition 

as well as (1.1) and (1.4). 
p(wl) = -p(ol +- n) (2.4) 

We remark that in applications usually I -=p@sin ot, i.e. relation (2.4) is satisfied. 
Given conditions (2.4), Eq.(l.l) is satisfied by the function -.z(t + T,E) as well as 

by the function z (t. s) I and so by virtue of the uniqueness of the solution under consider- 
ation, z(t,e) = -r(t + T, E). Using the oddness of i (4 we find that n (t, E) = a (t -t T, E), 

i.e. the minimal period of a(t,~) is equal to T. As was remarked earlier, for E = E* 
Eq.(2.1) has a solution with period 2T which therefore corresponds to the boundary of the 
zeroth domain of instability. Hence with condition (2.4) there exists just one interval of 
stability (al, a4 < E*). 

We assume in addition that 

p' (0jl) > 0 in (0, T:2) (2.5) 

i.e. the forcingterm varies monotonically between the extremal values. (In particular, this 
applies to p (ol) = p,sin ot). 

The same condition is also satisfied by the corresponding solution 2 (t, E), i.e. .t' (t, 
E) > 0 on (0, T/2). 

Indeed, differentiating (1.1) we find that the function .x' (i. t) = I it, ff serves as a sol- 
ution of the boundary-value problem 

i." + a (t. E) " + ep' (on z= I). L: (--T/Z. E) == I’ (T. 1, F\ 0 12.6) 

For small e, the solution y (t, -T!Z, t.) (where (cl = 0 and !t' >u for r=--Tie) of 
Eq.(Z.l) is positive in the interval (-772, T/2) by virtue of a (6, E) < 0. As F increases in 
the interval (0, ?+I the equality SJ (T/Z,-T/z,E)=O is impossible because here the solution 
v (t, E) of Eq.(2.6) would not exist (the function I' and ~r(t,-T/Z,&) are positive in the 
interval (-T/2. T/2) and are therefore non-orthogonal). Consequently, Y (1, -Ti?. I)> 0 and 
Green's function of problem (2.6), l'(t,s)<O in the interval (-T/?.,T/Z). kepresenting sol- 
ution (2.6) in the same way as (1.7), we find that ?.(t,&)>O in the interval (--T/Z, T/2), i.e. 
the coordinate 3 ft. Ei changes monotonically between the extremal values z(--T/z, F) -= --A (PI 
and z (T/Z. F) = A (8). 

Because a(t,E) = a(--!,&), at the boundaries of the first domain of instability of Eq. 
(2.1) the periodic solutions are even or odd. The even solutions obviously satisfy the 
condition y (--T'2) = Y (T/2) = 0. It was shown above that there are no such solutions when 
a = {O,E*I ; and so for & = Ep Eq.(2.1) has an odd 2T-periodic solution. Because the latter 
satisfies conditions (1.3), e4 = E*. 

Thus with condition (2.5) the boundary of stability of the family coincides 
with its boundary of existence. 

z (t, F) 

3. Assuming the parameter E to be fixed, and conditions (2.4) and (2.5) to be satisfied, 
we will investigate the behaviour of the amplitude-frequency characteristic (AFc) A (w) of 
the solution under consideration. We put t = wt.; then Eq.tl.1) takes the form 

c/Y + f (x) + ep (z) = 0 (3.1) 

where the prime denotes differentiation with respect to t. 
Suppose .%(%A, w) is a solution of Eq.(3.1), satisfying the conditions Z=A and 

z'=O at z = 3x12. If for some A and o 

-x(n,A,o)=O (3.2) 
then the corresponding solution x (~7 A, 0) belongs to the class under consideration. Thus 
relation (3.2) implicitly determines .4 (0). Hence 



780 

il. I rlw ‘0 ’ / / .:) 

We know that the function !/ (T) 1 / (T, I. (8)) is a solution of the corresponding vari- 
ational equation 

,\I"!/" O(T)!/ 0 I::. ;j 

with y (n,2) =m 1 and y' (;I 2)- (I. Because (I (T) z ri l--7). we have !/ (T) .= y i--i). It was shown 
above that for t'< t'* any solution of Eq.cl.3) had no more than one zero in the interval 
LO. '/‘I; consequently Y(T)> 0 in the interval [n 2. 21, and so ~4 > 0. 

The function zo (7. A. 01) satisfies an equation obtained by differentiating (3.1) with 
respect to the parameter (I): 

cOzy" '~ a (t)y = --2(OJ" ( : ; ,-I ) 

where s.,, (n/L?. A, o) = z ’ (n.2. A, co) = 0. because 
as In /5/, we find thlt 

.c (x 2. d, 01) = ‘1 and z' (n,'2.n. w) = 0. Hence, 

&:-$ 5 r”(s)y(n,s)ds :+i_ j x’(S)~/,(n,s,rl,s--..,~‘(s)y(n,s) 11 (:C.li) 
x712 ?lz TI 1. 

where y(~.s) and y, (T.s) are solutions of Eq.(3.4) with !, (S. \I = I), y' (s. S) = I( yS (s. s) ~~ -_I, 
and y; (s. S) = 0. 

Because s' (n,2) =-~ 0 and y(n,n) = 0, the term outside the integral in (3.6) is equal to 
zero. As was shown above, .r' (t) > 0 in the interval (0, T/2), and so .I' CT)< 0 in the 
interval (n:2,n). By virtue of the convexity of f(J) we have a(~)> a(z) for T < ; (T, ; 5.e 
(ni2,n)). Because the distance between neighbouring zeros of the solution Y(T) decreases 
as a (z) increases /6/, and from what was shown above, ys(s.;r Z)(o in the interval In 2,nl. 
we have in addition y,(n,s)<O for s - (n ", 5). Hence from (3.6) and (3.3) we find that .J~,,: 
0 and dA’dw< 0. Thus the AFC .I (LO) of the problem under consideration decreases mono- 
tonically. It can be shown that A (0)+6 as (!j--' CC, (and so for sufficiently large (,, 
the solution under consideration in unstable). 

If nlin f (a) < --'PO, then as was shown above, A ((")<A,; (by virtue of (2.4) and (2.5) 
I+, = ma1 p (ol) = p (%2), and so ~'1, is the first root of the equation f (.r) ~~ --rl' (x2)). In 

this case a(t)< 0, problem (1.3) only has the trivial solution, and as a result the family 

x (1, W) can be continued in (U to o=O; it is obvious that il (a))+ A, as o-+0. By 
virtue of a(t) (0 the solution ~(1, II)) is unstable for all w. 

If lnin f (s) > --Flea, then for small w there are no solutions of the form being considered. 

Indeed, if there exists a finite limit for -1 (~1) as o-to, then z" (y2) + 0. / (A)- -EpO as 
w -+ 0, which is, however, impossible because of the inequality i (~1) ,- -_"[,O. As was shown 

in /7/, the period of solutions .c(t) of Eq.tl.1) which preserve their sign in half-periods 
satisfies the inequality 7'(A)< T_(A), where 2'_ (.A) is the period of free oscillations of 
the system t" -I- f (L) - pO sgn z ~~ (1 sharing with c (1) the same amplitude A. Because linl 
T_ (A) = Bnik, Ii? = lirn f (X)/z as z-+00 /0j, li>o by virtue of the convexity of i (J), the 
existence of an infinite limit for 11 (w) as 0) -+ 0 is also precluded. Hence the family 
.c (t, (0) can be continued in (1) to some value o* > 0; the corresponding problem (1.3) has a 
positive solution in the interval (0, T). Because in this case .z\ -= y (n, n/2) = 0. we have 
dA/dw - -v as 03-f o*. 

It is clear that for some frequency interval (o*, wV) the corresponding variational 
Eq.(2.1) is oscillatory, with y 0, 0) > 0 in the interval (o,Tl. It follows from earlier 
considerations that for 01 E (w,. (Oy) the solution r(t, o) is stable. 

4. We will consider as an example the forced oscillations of a pendulum relative to the 
upper equilibrium position. The corresponding equation has the form 

nr1'r" ,U~:Y~IIJ F*~EI ~01 0 1% 1) 

3 Ai 

lE!EEl 

where 2 is an angular coordinate relative to the vertical, m is the 

I \ mass, 2 is the length of the pendulum and g is the acceleration due 

2 \ 
to gravity. 

\ 
For 

a.2 \ \3 \,5 
I .r I < n I system (4.1) satisfies conditions (l.l), (2.4) and 

\ (2.5). From the results obtained above it follows that the solution 
\ \ under consideration .? (/. P) satisfies the relations r (1, P, I(1 T. e, 

‘. -. and s(t,u)>O on (O,I'i. The AFC .4 (~1 decreases monotonically. 

0.5 1. 0 15 1 
For i),t~gl the solution .X (/. F) exists for all o), with A (II), -- 

Au arc sin e,(nryl) as W - 0. For i > nig1 there exists a value ISI* 
Fig.3 such that A (a,,) = 1 Or A (~1 < 7, dA:do - v as <u-o*. In both cases stable 

solutions correspond to some frequency interval (fi).' ('$I . Their ampli- 
tudes exceed ~2. because any solution with amplitude n <rr::! is unstable. (Here n(1)<(1). 

Fig.3 shows the AFC A (~1, (where (11 (0 W,) co,, (r’/)‘.‘q. obtained by numerical methods 
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for various values of the parameter a .W(mgl). The solid lines represent stable solutions and 

the dashed lines unstable Ones. It can be seen that as u increases the length of the 

interval (e*. %J), corresponding to stable solutions with amplitude A<-7r increases. The 

amplitude behaviour of the solutions under consideration, which depends on the dimensionless 

frequency "rt and the parameter e characterizing the magnitude of the forcing term, completely 
agrees with the theoretical results established above. 

As can be seen from Fig.3, for sufficiently small a @<a,= 3) there is a frequency 
interval in which there exists a second solution r,(t,t.) of the type under consideration with 
amplitude A,<% coinciding with r(t. ~1 for o -: w*. The solution zL(l.~l is unstable; unlike 
.I If, E) its amplitude increases with o and decreases with p. 

1. 
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THE PERTURBED MOJIONS OF A SOLID CLOSE TO REGULAR LAGRANGIAN PRECESSIONS' 

V.V. SAZONOV and V.V. SIDORENKO 

The asymptotic behaviour of a Lagrange gyroscope under the influence of 
a weak perturbing moment is investigated for the case of motions that 
are close to regular precessions. An averaged system of equations of 
motion is obtained in special evolutionary variables. The cases of a 
small constant moment and the presence of a cavity filled with highly 
viscous fluid are considered in detail. 

1. Tire eqwtions of notion ami statemmt of the problem. The motion of a heavy axisym- 
metric rigid body with a fixed point on the axis of symmetry (a Lagrange gyroscope) under the 
influence of a perturbing mechanical moment of arbitrary nature is described by the equations 

&' = -_(J.% - 9, otg6)9, + x sin ti $~ 6.11, (1.2) 
Qt,' = (lis6, - 52, ctg @)st, +- FM2 
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